
LECTURE

3
CHE 415

Chemical Engineering 

Thermodynamics II

Thermodynamic 

Properties of 

Two-Phase Systems

Department of Chemical Engineering

College of Science and Engineering

Landmark University, Omu-Aran, 

Kwara State.

1



• At the end of this week’s lecture, you should 
be able to:

– develop the Clapeyron equation and determine 
the enthalpy of vaporization from P, v, and T 
measurements alone.

– Develop general relations for cv, cp, du, dh, and ds 
that are valid for all pure substances.
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EXAMPLE: The molar volume of an organic liquid at 300 K and 1 bar is 0.1 

m3/kmol and its coefficient of expansion is 1.25 x10–3 K–1. What would be the 

change in entropy if the pressure is increased to 20 bar at 300 K? 

Solution The coefficient of volume expansion is defined as

The change in entropy is

∆S = –1.25 x10–4 (P2 – P1) = – 1.25 x 10–4 (20.0 – 1.0) x 105 = – 237.5 J/kmol K
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 In expressing H and S as functions of T and P, the following

derivatives are very useful:

•
𝜕𝐻

𝜕𝑇 𝑃
,

𝜕𝑆

𝜕𝑇 𝑃
,

𝜕𝐻

𝜕𝑃 𝑇
and

𝜕𝑆

𝜕𝑃 𝑇

 Since dH = CPdT, it may be expressed as

•
𝜕𝐻

𝜕𝑇 𝑃
= CP 2-1

 Also, we know that dH = TdS + VdP 2-2

 Dividing Eqn.2-2 by dT and restricting the result to constant P,

•
𝜕𝐻

𝜕𝑇 𝑃
= T

𝜕𝑆

𝜕𝑇 𝑃

 Combining this with Eqn.3-1 gives

•
𝜕𝑆

𝜕𝑇 𝑃
=
𝐶𝑃

𝑇
2-3

 And from one of the Maxwell eqn. we have,
𝜕𝑆

𝜕𝑃 𝑇
= -

𝜕𝑉

𝜕𝑇 𝑃

 The corresponding derivatives for the enthalpy is obtained by

dividing Eqn.2-2 by dP and restriction to constant T

•
𝜕𝐻

𝜕𝑃 𝑇
= T

𝜕𝑆

𝜕𝑃 𝑇
+ V 2-4
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 Substituting * in Eqn.2-4 yields,

•
𝜕𝐻

𝜕𝑃 𝑇
= V - T

𝜕𝑉

𝜕𝑇 𝑃
2-5

• Also if the fundamental relations chosen for H and S is given by

• H = f(T,P0 and S = f(T,P),

• It follows that

• 𝑑𝐻 =
𝜕𝐻

𝜕𝑇 𝑃
𝑑𝑇 +

𝜕𝐻

𝜕𝑃 𝑇
𝑑𝑃

• 𝑑𝑆 =
𝜕𝑆

𝜕𝑇 𝑃
𝑑𝑇 +

𝜕𝑆

𝜕𝑃 𝑇
𝑑𝑃

• Substituting for the partial derivatives in these equations from

previous derivations, we get

• 𝑑𝐻 = 𝐶𝑃𝑑𝑇 + V − T
𝜕𝑉

𝜕𝑇 𝑃
𝑑𝑃 2-6

• and 𝑑𝑆 =
𝐶𝑃

𝑇
𝑑𝑇 -

𝜕𝑉

𝜕𝑇 𝑃
𝑑𝑃

• But
𝜕𝑉

𝜕𝑇 𝑃
has the same meaning as volume expansivity for a

compressible fluid, hence
𝜕𝑉

𝜕𝑇 𝑃
= ᵦV

• Hence 𝑑𝑆 =
𝐶𝑃

𝑇
𝑑𝑇 -ᵦV𝑑𝑃 2-7
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 and 𝑑𝐻 = 𝐶𝑃𝑑𝑇 + 1 −βT 𝑉𝑑𝑃

 Similarly,
𝜕𝑆

𝜕𝑃 𝑇
= - ᵦV

• and
𝜕𝐻

𝜕𝑃 𝑇
= (1- ᵦT)V 2-8

• These are general relations relating the enthalpy and entropy of

homogenous fluids of constant composition to temperature and

pressure.

• The pressure dependence of the internal energy can be obtained

by differentiation of the equation U = H – PV

•
𝜕𝑈

𝜕𝑃 𝑇
=

𝜕𝐻

𝜕𝑃 𝑇
- P

𝜕𝑉

𝜕𝑃 𝑇
- V

• For κ= −
1

𝑉

𝜕𝑉

𝜕𝑃 𝑇

•
𝜕𝑈

𝜕𝑃 𝑇
= (κP - ᵦT)V 2-9

• Where κ is the isothermal compressibility.

• Eqns.2-6 to 2-9 which require values of ᵦ and κ, are usually

applied only to liquids.
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 T and V are more convenient independent variables than do T and P.

 The most useful property relations for U and S are the derivatives of


𝜕𝑈

𝜕𝑇 𝑉
,

𝜕𝑆

𝜕𝑇 𝑉
,

𝜕𝑈

𝜕𝑉 𝑇
and

𝜕𝑆

𝜕𝑉 𝑇

 Since dU = TdS – PdV

 Dividing through by dT and restricting to constant volume yields


𝜕𝑈

𝜕𝑇 𝑉
= 𝑇

𝜕𝑆

𝜕𝑇 𝑉

 and dividing through by dV and restricting to constant T yields


𝜕𝑈

𝜕𝑉 𝑇
= 𝑇

𝜕𝑆

𝜕𝑉 𝑇
− 𝑃

 From first law expression for closed system at constant volume

 𝐶𝑉 =
𝜕𝑈

𝜕𝑇 𝑉

 Hence,
𝜕𝑆

𝜕𝑇 𝑉
=

𝐶𝑉

𝑇
2-10

 Also from one of Maxwell equation
𝜕𝑃

𝜕𝑇 𝑉
=

𝜕𝑆

𝜕𝑉 𝑇

 Thus,
𝜕𝑈

𝜕𝑉 𝑇
= 𝑇

𝜕𝑃

𝜕𝑇 𝑉
− 𝑃 2-11
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• Also if the fundamental relations chosen for U and S is given by

• H = f(T,V) and S = f(T,V),

• It follows that

• 𝑑𝑈 =
𝜕𝑈

𝜕𝑇 𝑉
𝑑𝑇 +

𝜕𝑈

𝜕𝑉 𝑇
𝑑𝑉

• 𝑑𝑆 =
𝜕𝑆

𝜕𝑇 𝑉
𝑑𝑇 +

𝜕𝑆

𝜕𝑉 𝑇
𝑑𝑉

• Substituting for the partial derivatives in these equations from

previous derivations, we get

• 𝑑𝑈 = 𝐶𝑉𝑑𝑇 + T
𝜕𝑃

𝜕𝑇 𝑉
− 𝑃 𝑑𝑉 2-12

• and 𝑑𝑆 =
𝐶𝑉

𝑇
𝑑𝑇 +

𝜕𝑃

𝜕𝑇 𝑉
𝑑𝑉 2-13

• But
𝜕𝑃

𝜕𝑇 𝑉
has the same meaning as volume expansivity for a

compressible fluid, hence
𝜕𝑃

𝜕𝑇 𝑉
=

𝛽

κ

• Hence 𝑑𝑆 =
𝐶𝑉

𝑇
𝑑𝑇 +

𝛽

κ
𝑑𝑉 2-14

• And 𝑑𝑈 = 𝐶𝑉𝑑𝑇 + T
𝛽

κ
− 𝑃 𝑑𝑉 2-15
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 From PVT diagram, a phase transition at constant T and P occurs

whenever the phase boundaries is crossed, hence the values of the

extensive properties (V, U, H, S) changes abruptly.

 The values of these properties for a saturated liquid is very different

from that for saturated vapour at the same T and P, except G.

 G for a pure specie remains the same during a phase transition.

 Hence for system at equilibrium, dG = 0. this is a necessary

condition.

 For two phases α and β of a pure specie co-existing at equilibrium,

 Gα = Gβ 2-16

 Where Gα and Gβ are molar Gibbs energies of the individual phases.

 If the temperature of a 2-phase system is changed, the pressure

must also change in accordance with the relation between vapour

pressure and temperature for the system to remain in equilibrium,

 Hence dGα = dGβ 2-17

 But dG = VdP – SdT

 Substituting the expression for dGα = dGβ we have

 VαdPsat – SαdT = VβdPsat – SβdT 2-18

Department of Chemical Engineering, LMU

CHE 415 – CHEMICAL ENGINEERING THERMODYNAMICS II



 Upon rearrangement, Eqn.2-18 becomes,

 Substituting the expression for dGα = dGβ we have


𝑑𝑃𝑠𝑎𝑡

𝑑𝑇
=

𝑆𝛽 − 𝑆𝛼

𝑉𝛽 − 𝑉𝛼
=

∆𝑆𝛼𝛽

∆𝑉𝛼𝛽
2-19

 ∆Sαβ and ∆Vαβ are the changes which occur when a unit amount of a

pure chemical specie is transferred from phase α to phase β at the

equilibrium T and P.

 Also since dH = TdS + VdP

 Integrating this equation for a phase transition yields the latent heat

 ∆Hαβ = T∆Sαβ and ∆𝑆𝛼𝛽 =
∆𝐻𝛼𝛽

𝑇
2-20

 Substituting in eqn.2-19 yields,


𝑑𝑃𝑠𝑎𝑡

𝑑𝑇
=

∆𝐻𝛼𝛽

𝑇∆𝑉𝛼𝛽
2-21

 Eqn.2-21 is called the Clapeyron equation. It provides vital

connection between properties of different phases.

 For phase transition from liquid (l) to vapour (v), the Clapeyron

equation is written as


𝑑𝑃𝑠𝑎𝑡

𝑑𝑇
=

∆𝐻𝑙𝑣

𝑇∆𝑉𝑙𝑣
2-22
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 If the vapour phase is assumed to be an ideal gas, and the molar

volume of the liquid is negligible compared with that of the vapour,

the Clapeyron equation is modified as thus,

 ∆Vvap = Vg ∆𝑉𝑣𝑎𝑝 = 𝑉𝑔 =
𝑅𝑇

𝑃𝑠𝑎𝑡

 Eqn.2-22 then becomes,


𝑑𝑃𝑠𝑎𝑡

𝑑𝑇
=

∆𝐻𝑣𝑎𝑝

𝑅𝑇2/𝑃𝑠𝑎𝑡
2-22a


𝑑𝑃𝑠𝑎𝑡/𝑃𝑠𝑎𝑡

𝑑𝑇/𝑇2
=

∆𝐻𝑣𝑎𝑝

𝑅
2-22b

 ∆𝐻𝑣𝑎𝑝 = −𝑅
𝑑𝑙𝑛𝑃𝑠𝑎𝑡

𝑑 1/𝑇
2-22c

 Eqn.2-22c is called the Clausius-Clapeyron equation. It relates

the latent heat of vapourization directly to the vapour pressure vs T

curve.

 𝑑𝑙𝑛𝑃𝑠𝑎𝑡 =
∆𝐻𝑣𝑎𝑝

𝑅
𝑑

1

𝑇
2-22d

 A plot of lnPsat vs 1/T gives the value of the slope as ∆Hvap/R.

 Integration of Eqn.2-22d yields,
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 where hfg = ∆Hvap

 Other correlations of Eqn.2-22d are

 𝑙𝑛𝑃𝑠𝑎𝑡 = 𝐴 −
𝐵

𝑇
2-23a

 A and B are constants for specific species (though less accurate)

 There is also 𝑙𝑛𝑃𝑠𝑎𝑡 = 𝐴 −
𝐵

𝑇+𝐶
2-23b

 A,B and C are constants

 This is the Antoine equation provides a more satisfactory form, and it

is more widely used.

 For high accuracy, we have

 𝑙𝑛𝑃𝑠𝑎𝑡 = 𝐴 −
𝐵

𝑇+𝐶
+ 𝐷𝑇 + 𝐸𝑙𝑛𝑇, 2-23c

 A,B,C,D and E are constants (difficult to evaluate)

 These Eqns are used to estimate the saturation vapour pressure of a

substance.
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